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Abstract

From the USDA to private carbon sequestration companies, a wide
range of organizations offer producers short-term incentives to adopt cover
cropping and other environmentally beneficial practices. This paper pro-
vides a model of how adoption cost and long-term repeated costs and
benefits of a practice connect short-term additionality and long-term pro-
gram impacts. If participants vary by adoption costs and have identical
long-term costs, then targeting more additional individuals will also tar-
get those with greater long-term impact. If they vary by long-term costs,
long-term impacts are increasing in additionality as the program attracts
fewer always-adopters, and then decreasing in additionality as the popu-
lation shifts to those for whom the practice is always unprofitable. This
paper also estimates the effects of 3-year EQIP cover cropping incentive
contracts on cover cropping both during and after the contract. Using
individual EQIP application data, this paper estimates a regression dis-
continuity across EQIP application scores that fall above and below the
approval threshold for their application pool. Cover cropping during a
contract is found to be 95% additional, in line with matching study es-
timates of the effects. The post-program effect estimates are imprecise
but suggest substantial long-term effects on cover crop use. Heteroge-
neous treatment effects across regions and contract size suggest that the
long-term impact of cover cropping incentives is decreasing in a group’s
additionality, complicating efforts to jointly target additionality and long-
term impacts.

∗The findings and conclusions in this paper are those of the author and should not be
construed to represent any official USDA or US government determination or policy. Thanks
to Andrew Rosenberg, Bryan Pratt, Laura Paul, Peter Beeson, Daniel Szmurlo and others at
the ERS for their valuable help in understanding USDA programs and data and discussions
on this project. Thanks also to Jim Poterba, Amy Finkelstein, Dave McLaughlin, and the
MIT Environmental Economics and Public Economics lunch groups for economic guidance
and feedback. This work was conducted with fellowship support from the Environmental
Defense Fund.
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1 Introduction

Agricultural producers shape the land’s environmental health through the prac-
tices they choose. Different methods of planting, tilling, and managing weeds
and pest can store or release carbon, pollute or preserve waterways, and foster
or hinder biodiversity. Environmentally beneficial agricultural practices may
provide enough financial benefits to be profitable on some farms while not on
others, depending on a farm’s economic and environmental circumstances (Wit-
twer et al., 2017). As such, ever since the Soil Erosion Service formed in 1933 to
prevent the recurrence of the Dust Bowl, government has played a role in encour-
aging farmers to adopt soil-preserving practices (Turner et al., 2014). Today,
the expanding market for carbon credits has also reached agriculture. These
crediting programs pay for producers to adopt practices that increase the car-
bon sequestered in soil, such as reducing tillage or planting cover crops. Cover
crops are planted during times when the ground would otherwise be left fallow,
protecting the soil until the farmer kills the cover crop to make way for the cash
crop. Cover cropping can control runoff and erosion (Laloy and Bielders, 2010),
reduce water pollution (Kladivko et al., 2014), allow farmers to reduce the use
of artificial fertilizers and herbicides (Schipanski et al., 2014), and increase the
level of carbon sequestered in the soil (Poeplau and Don, 2015).

Conservation agriculture programs face some key challenges to creating long-
term benefits, as improvements in soil quality can easily be reversed if a farmer
reverts to their previous practices. Soil carbon includes multiple chemical forms,
some of which remain unchanged for thousands of years and others that can de-
grade and release stored carbon within a decade if a farmer abandons their soil
conservation practices (Dynarski et al., 2020). This problem cannot be solved
by simply lengthening the duration of carbon contracts. farmers in the soil
carbon credit market are uninterested in long-term contracts for practices, pre-
ferring the flexibility of shorter contracts, and would likely require unfeasible
high payments to make longer contracts (Drechsler et al., 2017). Most soil car-
bon credit standards today offer farmers contracts lasting 5 to 30 years (Oldfield
et al., 2022), and the USDA’s long-running Environmental Quality Incentives
Program (EQIP) provides incentives for 1 to 5 years after which a farmer can-
not get another EQIP contract for the same practice on the same field (USDA
NRCS, 2018).

However, the designers of these incentive programs often expect that pro-
viding short-term incentives may lead to long-term practice change. First, the
short-term incentives may help farmers overcome short-term adoption costs.
Cover cropping introduces new seed costs immediately but takes several years
to improve the soil enough to bolster yields, so the practice may need three
or more years to become profitable (Myers et al., 2019). Short-term incentives
may also help farmers learn how beneficial a practice is for them, and how
best to implement the practice in their area: what cover crop species to plant,
when to plant it, and how and when to kill it. Farmers cite uncertainty around
the economic benefits of conservation agriculture practices as a key barrier to
implementing them (Arbuckle and Roesch-McNally, 2015; Conservation Tech-
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nology Information Center, 2023; Gonzalez-Ramirez et al., 2015; Reimer et al.,
2012). Accordingly, access to information about cover crops plays a strong role
in practice adoption (Baumgart-Getz et al., 2012).

To understand the social benefit of these carbon market contracts and short-
term incentive programs, we therefore must understand if or when short-term
contracts lead to long-term practice changes. Understanding the duration of
practice change has important implications for the cost-efficacy of incentives
and interventions. If farmers only need financial incentives to get through the
initial costs of adoption and generally continue the practice afterwards on their
own, then a few year’s spending in support may create decades of benefits. On
the other hand, where practices never become profitable to the point that farm-
ers choose to sustain them on their own, a program may only provide benefits
for as long as it continues payments. I introduce a model that provides insights
into the relationship between short-term additionality and long-run impacts,
driven by the underlying adoption costs and long-term costs that program par-
ticipants face. Additionality is the degree to which a program creates behavior
change compared to what participants would have done in the business-as-usual
case. If all participants in a cover cropping program were already planning
to cover crop, the program will have no additionality; if none of them would
have done so, the program is completely additional. Change must be both addi-
tional and persistent to create substantial reductions in environmental damages,
particularly in regards to nature-based solutions for climate change. A low ad-
ditionality program creates little to no benefit in the short or long run unless it
is cheap enough and widespread enough to compensate for the small individual
impact. The level of additionality is estimated to vary widely across agricultural
practices (Mezzatesta et al., 2013; Pannell and Claassen, 2020). Low practice
duration would mean a high risk of rerelease of carbon, increasing the optimal
ex ante discounting rate of temporary storage (Lötjönen et al., 2024; Murray et
al., 2006). In the literature, these two problems are often discussed as separate
concerns.

In this model, I provide a framework suggesting that the two problems can
be traced to the same economic fundamentals. Participants with higher adop-
tion costs and/or annual costs are more likely to be additional, but they are
more likely to persist with the practice post-contract when a practice is at
least slightly profitable to maintain in the long run. Thus, if potential partic-
ipants differ by adoption costs and share the same long-term costs, targeting
the ”most additional” participants will also target those with higher long-term
impact. However, if potential participants differ mostly by long-term costs, the
”least additional” participants will be always-adopters for whom the payment
makes no difference, and the ”most additional” participants will be those with
high long-term costs who will be quick to drop the practice after payments end.
In this case, targeting the ”moderately additional” participants for whom the
practice is near the edge of profitability will have the highest long-term impact,
even if this group has lower levels of short-term additionality. This framework
thus simplifies the difficult-to-estimate metrics of additionality and long-term
impact into two concrete questions: how large is the adoption barrier to a prac-
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tice? And how costly is the practice to maintain? Encouraging joint consid-
eration of short-term and long-term impact can help programs better optimize
their targeting of participants.

I empirically explore this question in the context of EQIP, focusing on EQIP
contracts for cover cropping. Founded in 1996, EQIP is the largest and longest
running program providing incentives for conservation on working lands nation-
ally, contracting with at least thirty thousand farmers per year from 2014 to
2024 (NRCS, 2024). With access to the USDA’s ProTracts database of EQIP
applications, I use a regression discontinuity around EQIP application scores to
compare cover-cropping rates of barely-successful and barely-unsuccessful EQIP
applicants.

I find that receiving an EQIP cover-cropping contract increased cover crop-
ping rates among successful applicants by 95% during the contract period. This
indicates that 95% of EQIP cover cropping contracts are additional, meaning
that the farmer would not have planted a cover crop without the EQIP contract.
Numerous papers have attempted to estimate the additionality of cover crop-
ping payment programs, often using matching approaches (Mezzatesta et al.,
2013; Claassen et al., 2018; Sawadgo and Plastina, 2021), modeling of adoption
costs (Lichtenberg et al., 2018; Fleming et al., 2018), or county-level estimations
(Park et al., 2023) that do not control for whether a producer has applied for or
expressed interest in the conservation program. Rosenberg et al., 2024 provides
an instrument that is clearly exogenous to producer interest, using a regression
discontinuity across areas eligible and ineligible for expanded EQIP cover crop
funding through the National Water Quality Initiative. They find that most of
the impact of the NWQI on cover cropping comes from increased cover cropping
on additional lands under EQIP contracts. However, they cannot control for
the other channels through which the NWQI can impact cover cropping, such
as increased funding for technical education and support, and increased EQIP
funding for practices such as reduced tillage that are complementary to cover
cropping. Accessing the EQIP application database allows this paper to pro-
vide a unique regression discontinuity estimate that minimizes room for omitted
variable bias. The resulting 95% additionality estimate for cover crops is similar
to the 80% and higher cover crop additionality estimates found in the bulk of
the literature (Claassen et al., 2018; Fleming et al., 2018; Mezzatesta et al.,
2013; Rosenberg et al., 2024), though it is higher than Sawadgo and Plastina,
2021’s estimated 54% additionality for cover cropping in Iowa.

This paper also finds that EQIP seems to substantially increase long-term
cover-cropping, though estimates are imprecise. Since the literature on cover
crop additionality to date has largely focused on the during-contract effect, this
long-term effect is a unique contribution to the cover cropping literature, and
joins a larger conversation about hysteresis effects in environmental programs.
After the expiration of an CRP contract, FIX CITE Rosenberg et al., 2022
finds that most fields revert to previous practices at high rates. Environmen-
tal programs seem able to create substantially durable change in many cases:
Wallander et al., 2017 find that EQIP-induced changes in tillage do persist well
beyond the contract period, and 66% of land retired through the Conserva-
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tion Reserve Program remains as grassland in the 6 years after the program
expiration (Barnes et al., 2020).

I test how this relationship between additionality and long-term impact ap-
pears in the case of cover cropping. Breaking out the population by region and
operation size, I find that that a group’s additionality is inversely correlated to
its long-term impact. This suggests that targeting the most additional popula-
tions for cover cropping contracts would decrease the long-term benefits from
the program.

In this paper, I first discuss the EQIP program and the data used in this
paper. I then provide the model of the farmer’s practice adoption and persis-
tence decisions. I then explain the regression discontinuity methodology, and
the present the results in the following section.

2 Data and Setting

2.1 The EQIP Program

This paper’s analysis focuses on the USDA’s Environmental Quality Incentives
Program (EQIP). Established in the 1996 Farm Bill, the program offers educa-
tional, technical, and cost-share incentives to agricultural producers adopting
environmentally beneficial practices on working lands. It was first authorized
to spend $1.2 billion over 7 years, and has been renewed and expanded in every
Farm Bill since.

Producers can apply for assistance with adopting practices that reduce water
or air pollution, conserve water, control soil erosion, or protect habitat for at-risk
species (Stubbs, 2011). EQIP has historically funded many key greenhouse-gas-
emission-reducing practices, such as reducing tillage and planting cover crops,
for their value in reducing soil erosion as well as air and water pollution. The
Inflation Reduction Act of 2022 substantially increased funding specifically for
emission-reducing practices. Cover cropping is EQIP’s most commonly funded
practice, drawing $504 million in payments made between 2017 and 2022 (En-
vironmental Working Group, 2023).

In an EQIP contract, a producer receives a payment for performing certain
agreed-upon conservation actions. The state-level Natural Resources Conser-
vation Service (NRCS) office chooses the size of the incentive for each eligible
practice. The payment amount is set to cover a maximum of 75% of the ex-
pected direct costs of implementing a practice in that state and up to 100% of
the expected revenue to be lost through reduced output, when applicable (USDA
NRCS, 2018). The producer receives the payment once the USDA certifies they
have implemented the practice. For practices like cover crops or reduced tillage
that must be repeated annually, the EQIP contract requires farmers to continue
the practice for one to five years1, and the producer is paid a partial payment
each year once the USDA has confirmed they completed the practice that year.

1The 2018 Farm Bill, which covers some contracts that would begin but not end in my
study period, expanded the maximum contract length to 10 years (USDA NRCS, 2018)
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To participate in EQIP, producers must go through an application process.
Acceptance rates have varied widely across years from 25% to 45%, reflect-
ing year-to-year variation in EQIP funding and in application numbers (Happ,
2021). Upon receiving an application, the NRCS first checks for application com-
pleteness and program eligibility. Applications are submitted into pools, and
eligible applications are ranked and funded within these pools. The State Con-
servationist’s office in each state defines the pools, and often group applicants
by environmental concerns addressed, geographic area, beginning and socially
disadvantaged producers, or type of crop or livestock produced (USDA NRCS,
2018). The State Conservationist also chooses how much of the year’s EQIP
funding to place into each pool to best meet identified state-level needs while
also following federal USDA requirements on elements like the share allocated
to crop versus livestock producers.

Within the pools, applications are funded in order of their ranking score.
Applications receive more points for practices with higher environmental im-
pact, whether they address the NRCS’s key program priorities, and also if the
land has characteristics like highly erodible soil that make addressing a concern
particularly urgent. Applications are also scored on cost-effectiveness (USDA
NRCS, 2018). Once applications are scored and ranked, the USDA funds each
application in a pool from highest scoring to lowest until they run out of funds.
The remaining applicants are deferred for consideration until the next year,
when they can choose to resubmit their application as is, or they may cancel or
modify the application. These deferred applications must then compete against
the next year’s pool, and again may or may not be funded.

2.2 Contract and Applicant Data

Data on successful and unsuccessful EQIP applicants comes from the USDA’s
ProTracts database, which tracks contracts for NRCS programs including EQIP
and CSP from the initial application through the final payments. For each
application, ProTracts records the practices covered, the application’s funding
pool assignment and score, and the contract’s status as it moves through the
application dataset. ProTracts also includes some geographic data. ProTracts
collects a standardized USDA tract number, farm number, and planning land
unit number to facilitate matching to individual farms and fields.

Combining the data from 2004 to 2022 produces information on 1.49 million
unique applications, with summary statistics reported in Table 1. 53% of those
have reported pool affiliations and scores, and 18% of these are unsuccessful
applications. Cover crops are one of the most common practices, and are part
of 10% of applications. The mean application expects $30,000 in payments and
impacts 335 acres of land. 55% of applications include information on which
practices the contract would cover, which is not always imputed into ProTracts
until an application becomes an active contract. Among those, 10% of contracts
include cover cropping.

The dataset for this analysis is compiled from annual system pulls from 2004
to 2022, providing a snapshot of contracts that are active or in the application
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Table 1: ProTracts Applications Summary Statistics

(1) (2) (3)
VARIABLES N mean sd

Contract accepted 1,490,199 0.590 0.492
Share of contract practices certified 1,490,199 0.373 0.461
Ranking score 796,205 523 5,057
Estimated payment ($) 823,423 30,038 1,104,996
Acres treated 1,061,707 335 6,039
Conservation cropping in contract 832,059 0.039 0.192
Cover cropping in contract 835,454 0.100 0.300
Reduced tillage in contract 831,103 0.011 0.105
No-till in contract 832,181 0.044 0.205

process that year. The exact implementation of these data pulls varied across
years. Unsuccessful applications were omitted from some years of the data
pulls, and the share of unsuccessful applications included may vary within years
as well. As Figure 1 shows, this results in the number of deferred or canceled
applications caught in the pull varying widely across years, particularly in 2011-
2013 and 2019-2020, which I therefore omit from my analysis.

To manage the differential missingness created by these omissions, I identi-
fied the years where the data pull included a smoother distribution of successful
and unsuccessful applications across the score margin, since this discontinuity
may be representative of data issues. Figure 2 shows the sharp discontinuity in
application counts across the score cutoff, a result of these missing applications.
The results in Figure 2b show that after omitting applications originally sub-
mitted in the low-quality years of 2011-2013 and 2019-2020 and the similarly
identified states of most concern, this discontinuity still exists but is somewhat
smoothed.

2.3 Practice Data

To track the practices implemented on individual parcels, I use two USDA
datasets: the Crop Acreage Reporting Database (CARD) from the FSA and
the Agricultural Resource Management Survey (ARMS) from the ERS/NASS.
CARD compiles data from Form 578, which all agricultural producers must file
annually to participate in USDA programs, including insurance or subsidies.
Farmers must report what crops they are planting and whether the crop is for
harvest, grazing, or cover only. The dataset provided for analysis includes data
on 23.6 million fields annually from 2013 to 2019, 855 thousand of which I match
to ProTracts cover cropping applications. CARD-reported cover cropping rates
stayed fairly even from 2013 to 2019, with 3.5 to 4.5% of fields using a cover
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Figure 1: ProTracts Applications From 2004 to 2023
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crop annually as depicted in Figure 3.
From this dataset I construct a measure of cover cropping in line with the

broad definition used in current USDA analysis of CARD (Pratt et al., 2023). I
classify a field as cover cropping if it reports a cover only planting or if it reports
a planting that is not for grain or silage as a second planting after a cash crop.
Since farmers may only report one purpose for each crop, this broad definition
captures plantings that are serving the role of cover crops while also fulfilling
other uses, such as grazing. In addition, in my main measure, I classify fields
with an active EQIP cover cropping contract are implementing cover cropping.
This corrects for underreporting through Form 578 among EQIP participants.
Very few active EQIP cover crop participants report a cover only crop through
Form 578, possibly because they have already reported the cover crop to the
USDA through the separate channel used for EQIP reporting. Since 95% of
farmers under active contract complete the practices and get payment, this
assumption will not substantially overestimate the cover cropping rate for this
group.

A key concern with this measure is that farmers other than EQIP partic-
ipants have also historically underreported non-cash crops on Form 578. The
USDA has long asked that farmers report all plantings through Form 578, but
farmers only need to report their cash crop plantings to receive full insurance
eligibility. Before 2021, they received no incentives or disincentives for accu-
rately reporting cover crops. As such, CARD estimated much lower rates of
cover cropping than other data sources such as windshield surveys (Pratt et
al., 2023). Therefore, this paper’s estimates may be an upper bound on the
additionality of EQIP cover cropping and a lower bound on EQIP’s long-term
effect.

Going forward, I plan to correct this by examining effects in the years 2021
and beyond, when reporting improved after the Pandemic Cover Crop Program
introduced a $5 per acre insurance premium discount for farmers that planted
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Figure 2: Density of Applications Near the Cutoff
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Figure 3: Cover Cropping in CARD

0

.02

.04

.06

.08

.1

Sh
ar

e 
of

 C
AR

D
 F

ie
ld

s 
C

ov
er

-C
ro

pp
in

g

2013 2014 2015 2016 2017 2018 2019
Year

9



Figure 4: States Included in Analysis

and reported a cover crop. This $5 incentive is fairly modest compared to the
$30-60 EQIP payments (Myers et al., 2019), and was intended primarily to
provide additional pandemic-era support to farms using this socially beneficial
practice. However, it dramatically increased reporting of cover cropping into
line with cover cropping estimates obtained through other methods (Pratt et
al., 2023), and the habit of reporting cover crops through form 578 seems to
have sustained itself even after the incentives ended in 2022. This analysis will
be possible once the CARD data for 2020 and beyond is panelized for analysis,
enabling data linkages.

2.4 Linking CARD and ProTracts

To follow the outcomes of these ProTracts applications over time, I use USDA
Planning Land Units (PLU) and Common Land Unit (CLU) identifiers of the
field to merge ProTracts to the CARD crop planting data. As part of the appli-
cation process, the USDA requires applicants to include the PLU information
that will let the USDA identify the relevant fields. Most commonly, the PLU
field, county, and tract is the same as the USDA CLU that identifies fields in
CARD. However, this use of CLUs for PLUs varies across states. 27% of appli-
cations have clearly unmergeable field identifiers without numbers, and 60% of
applications have PLU numbers that do not actually match to a USDA CLU.

To manage this missingness, I focus my analysis on 13 states that most
commonly use CLUs in ProTracts and thus best merge to CARD, depicted in
Figure 4, and that merge significant numbers of both successful and unsuccessful
applications. For the states and years of focus, 72% of ProTracts fields have
location data, and 52% of those merge to a parcel in CARD, resulting in 38%
of entries matching. After narrowing down this matched sample to those with
scores near the cutoff, I use 140,000 matched fields in my main regressions.
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3 Model

In designing EQIP, the USDA faces a policy problem common to many gov-
ernment programs. Through EQIP, the USDA uses a short-term, voluntary
incentive program to induce a behavior change that will provide social benefits.
This behavior continues to provide a stream of benefits as long as it is sustained,
and stops if the practice reverts. Calculating the total benefit of the program
requires the answers to three questions. The first is additionality: during the
program’s duration, how much does it change participants’ behavior from what
they would have done otherwise? The second is hysteresis: after the program
ends, how much of this behavior change continues? The final element is the
translation from behavior change into environmental benefits: among the peo-
ple who change their behavior, how much environmental impact in terms of
carbon stored or pollution averted will their actions create?

A policymaker developing such a program must consider these factors as
they decide which populations they wish to target, how much they will offer
in payments, and whether they will allow previous participants to re-enroll. In
this model, I link a participant’s additionality and hysteresis to a pair of under-
lying factors: the short-term cost of adoption, and the long-term opportunity
cost (or benefit) of continuing the practice. Potential participants may vary
widely in these short-term and long-term costs, and those costs impact both
the additionality and duration components of a contract’s effects.

In this section, I first model the farmer’s practice adoption decision as a
function of adoption costs, long-term practice costs, and a shock to practice
profitability. Next, I discuss how the hysteresis/additionality relationship differs
depending on whether farmers vary by adoption cost or by long-term costs. I
then explore how this relates to the program’s cost of contracting. Finally, I
discuss some extensions of the model.

3.1 The Farmer’s Adoption Decision

This section establishes how a farmer will behave with or without a contract,
which allows estimation of a their additionality under contract. In this model,
a farmer who is not under contract must decide in each time period whether
to take a socially beneficial action xt = 1 that produces a social benefit e, or
to use a conventional practice xt = 0 that produces no social benefit. If under
contract, the farmer must set x1 = 1, but may then freely choose their practice in
subsequent periods. In this paper’s case, the beneficial action is cover cropping.
The farmer’s profit in a period t is

πkt(Xkt, ϵt) =b0k if xkt = 0

b1k − akD(xt > xt−1) + ϵt if xkt = 1
(1)

Xkt is the history of practices on field k through time t, bxk is the constant
average profit for practice x, ak ≥ 0 is the adoption cost of cover cropping. ϵt
is a time-variant shock in the profitability of cover cropping, with E[ϵt] = 0.
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The farmer learns ϵt before they choose period t’s practice xt. I assume that
the farmer is risk-neutral. They therefore choose their practices to maximize
E[

∑
t(1−r)t−1πkt(Xkt, ϵt)], the risk-neutral expected profits discounted at rate

r. Here, I explore a simple two-period setup, so the farmer chooses x1 to max-
imize πk1(Xk1, ϵ1) + (1 − r)E[πk2(Xk1, ϵ2)|x − 1]. The farmer has not cover
cropped before, so x0 = 0 and the farmer has not yet paid the adoption cost.
In this case, the farmer’s period 1 cover cropping decision will depend on three
things: the adoption cost ak, the long-run cost difference ∆bk = b0k − b1k, and
the profitability shock ϵk. The farmer will choose x1 = 1 if

ϵ1 > ∆bk + ak − (1− r)∆E[πk2] (2)

where ∆E[πk2] = E[πk2|x1 = 1] − E[πk2|x1 = 0], the expected increase in
period 2 profits from having cover cropped and paid the adoption cost in period
1. When x1 = 1, the farmer chooses x2 = 1 so long as ϵ2 > ∆b. When x1 = 0,
the farmer cover crops only if ϵ2 > ∆bk + ak. The farmer’s total change in
expected profits from adopting in period 1 is therefore

∆[πk2] =P (∆bk < ϵ2 < ∆bk + ak)(∆bk + E[ϵ2|∆bk < ϵ2 < ∆bk + ak])

+ akP (ϵ2 > ∆bk + ak)
(3)

Two terms drive this change in expected period 2 profits. The first term is the
difference in profits created by the farmer choosing to cover crop in period 2
when x1 = 1 when they would not have if x1 = 0. The second is the farmer’s
higher profits when the positive shock to cover cropping ϵ2 is large enough that
they choose to cover crop whether x1 = 1 or 0.

The expected probability of additionality of Period 1 cover cropping is there-
fore

Additionality(ak,∆bk) = P (ϵ1 < ∆bk + ak − (1− r)∆E[πk2]) (4)

Figure 5a models additionality of cover cropping with ϵ ∼ N(0, 1) . Cover
cropping is less likely when adoption costs are higher and when cover cropping
provides lower annual profits, so expected additionality is increasing in both a
and ∆b. If a farmer faces high adoption costs and does not expect to see a
long-term annual profit, they are very unlikely to adopt a practice on their own,
so an incentive should substantially change their behavior while under contract.

Behavior change under contract is not guaranteed to translate into continued
behavior change post-contract. If a farmer cover crops in period 1 and pays the
adoption cost, cover cropping will be profitable in period 2 whenever ϵ2 > ∆bk,
while if the farmer did not cover crop in period 1, they will cover crop only if
ϵ2 > ∆bk + ak. So

LongTerm(ak,∆bk) = Additionality(ak,∆bk) ∗ P (∆bk < ϵ2 < ∆bk + ak) (5)

Therefore, the period 2 impact from a period 1 contract will be the first-period
additionality times the probability that a period 2 cover crop would be profitable
only if the farmer already invested. This equation shows that for a contract
to have long-term effects, two conditions must hold. First, the contract must
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Figure 5: Contract Impacts on Cover Cropping Over Time
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have changed their during-contract behavior, so Additionality(ak,∆bk) > 0.
Equation 4 shows that this is more likely when the adoption cost or annual
costs of the practice are higher. Second, having paid the adoption cost must
meaningfully impact whether cover cropping is profitable in some states, so
P (∆bk < ϵ2 < ∆bk + ak) > 0. This term is strictly increasing in the adoption
cost: if a = 0, then past cover cropping experience has no impact on its future
profitability, and a short-term contract does not impact later choices. However,
its relationship to the annual cost ∆b is more ambiguous. If ∆b is so large
that farmers would almost always choose to cover crop or so small that they
would never wish to cover crop, the adoption cost would not weigh as heavily in
their decision. It’s the farmers for whom cover cropping teeters on the edge of
profitability, the farmers for whom ∆b is slightly below 0, for whom P (∆bk <
ϵ2 < ∆bk + ak) will be the largest. Figure 5b shows how this varies across ∆b
and a.

Figure 5b demonstrates that long-term behavior change increases in a simi-
larly to additionality, but differs in its response to annual costs. When adoption
costs increase and annual costs remain fixed, additionality and long-term bene-
fits both increase, as Figure 6b shows. On the other hand, long-term impacts are
increasing and then decreasing in the annual cost of cover cropping. Figure 6b
traces a curve of additionality when long-term benefits vary and adoption cost a
is a positive constant. When cover cropping is particularly profitable in the long
run, farmers are likely to adopt cover cropping in period 1 even in absence of
the contract, as the low additionality on the left side of Figure 6b demonstrates.
Moving right on the graph as the the annual cost of cover cropping increases,
rising first-period additionality increases the impact on second-period behavior.

However, as we approach ∆b = 0, the tipping point of long-term profitabil-
ity, increasing ∆b becomes associated with lower long-term impacts. As ad-
ditionality approaches 1, P (∆bk < ϵ2 < ∆bk + ak) begins decreasing because
it becomes increasingly unlikely that a farmer would ever find cover cropping
profitable without support. Getting a farmer past the adoption cost hurdle no
longer matters when the annual profit losses are large enough to discourage
cover cropping on its own.

This means that if a policymaker targets participants or evaluates programs
based only on their short-term additionality, whether this maximizes total envi-
ronmental benefits will depend on whether potential participants vary more by
long-term or adoption cost. If adoption cost is the primary driver, the higher
additionality participants will also have the greatest long-run benefit (or, if the
practice is unprofitable for most to sustain in the long run, will at least be no
worse.) On the other hand, if long-term costs vary, pushing for the ”most ad-
ditional” short-run participants may lead a policymaker to target the farmers
who simply will not sustain a practice after the end of payments.

3.2 Contract Cost

Farmers with different values of a and ∆b will also differ in the size of contract
payment p needed to induce participation. Combining the payout structure
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Figure 6: Exploring The Effect of Cost Variation
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(a) The Effects of Varying Adoption Cost
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Figure 7: Contract Costs and Net Benefits
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(b) Contract Efficiency at Reserve Price

from Equation 1 with the cover cropping choices in Equation 2, the farmer will
accept a contract if

p ≥ P (Additional)(a+∆b− E[ϵ1|Equation 2]− (1− r)∆E[π2]) (6)

More additional farmers will tend to a have a higher minimum reserve price,
since the contract will alter their expected profits only when they expect to
change their behavior. Similarly, expected period 1 profit losses increase the
farmer’s reserve price. However, the needed payment is decreasing in ∆E[π2],
the farmer’s expected change in long-term profits from having already paid the
adoption cost. If a farmer thinks they will wish to cover crop in the future, they
are more willing to pay the adoption cost today.

Graphing farmer reserve prices in Figure 7a, reserve prices move in the op-
posite direction of additionality. Higher adoption costs and higher annual costs
increase the chance of additionality, but they drive the farmer’s reserve cost
upwards.

Given that additionality, cost, and long-term impact may not move together,
who should the policymaker target? Assume that land provides some fixed envi-
ronmental value e each year that a farm cover crops, and the planner discounts
the environmental value at the interest rate r. If the policymaker knows the
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farmer’s value of ak and ∆bk, they can choose to offer farmers contracts with
their reserve price pk. The policymaker’s expected value per dollar for offering
a farmer this contract is therefore

Benefitk/Costk = e
Additionalk + (1− r)Longtermk

pk
(7)

Figure 7b plots the results assuming e = 1. In this model, it is actually more
efficient for the policymaker to target the farmers with ∆b < 0 for whom cover
cropping is expected to be beneficial in the long run, since they both demand
lower subsidies and have a more persistent effect when they are additional. The
exact shape of the relationship between additionality and optimal targeting will
vary across situations, as adoption costs, long-term costs, and error structures
vary. However, it will rarely be the most cost-effective to target purely the
”highest-additionality” populations, since they will require a high cost to im-
plement a practice they would never find profitable on their own, and they are
not likely to sustain the practice in the long term.

Comparing the farmers’ reserve price of a contract also offers insight into
who will select into a program. EQIP offers a price per acre pEQIP for cover
cropping that is fixed at the state level. Within a state, any eligible farmer
whose reserve price is ≤ pEQIP should therefore want to apply for EQIP. This
means the pool of applicants will look like the sample in Figure 7a with p <=
pEQIP , represented by the lighter share of the graph. These applicants would
disproportionately include farmers with low adoption prices and low annual
costs, who are therefore particularly willing to adopt Figure 5 demonstrates
that these farmers are also the ones with the highest chance of adopting a cover
crop on their own and thus have lower short-term additionality.

This applicant selection effect explains why papers that compare success-
ful applicants to nonapplicants may overestimate EQIP’s additionality. The
matching papers do control for a wide set of covariants, hoping to avoid omit-
ting any variables that might determine a farmer’s odds of adopting a practice
on their own. However, a farmer’s decision whether to apply to EQIP or not
is a particularly strong signal of willingness to adopt, and one that is omitted
from other analysis. A farmer who would never apply to EQIP also would have
little or no interest in cover cropping without support, while the applicant pool
will include a mix of always-adopters and sometimes-adopters. Since this paper
limits analysis to the applicant pool, it limits comparisons to this more similar
group.

3.3 Applications to Cover Cropping

Where does cover cropping actually fall in this diagram of adoption and annual
costs? Scientists and economists have created a considerable literature on the
adoption costs and ongoing costs and benefits of cover cropping. Annual costs
and benefits are extremely heterogenous: as a farmer surveyed by the Con-
servation Technology Information Center, 2023 noted, ”recipes... don’t work
in a living biological system.” Both regional and farm-specific agroecological
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and economic conditions can greatly impact what cover cropping techniques are
most appropriate, and can vary the costs and benefits of that optimal practice.
In this section, I discuss the annual and adoption costs and benefits of cover
cropping, then discuss what this means for optimal policy.

The annual cost of planting and killing the cover crop is highly heterogeneous
based on a farmer’s choice of cover crops and management methods. Nation-
ally, total seed, planting, and termination costs may range from $15-$78 per
acre (Myers et al., 2019). In Kansas alone, cover cropping requires between
$42 to $119 per acre for seed, planting, fertilizer, application, and termination
(Bergtold et al., 2019). Planting costs are more consistent, about $17.70 per
acre in 2019, but seed and fertilizer costs are highly variable: from $24.50 per
acre for crimson clover to $91.50 for densely planted and fertilized rye (ibid.).

Different choices of cover crop provide different benefits that may allow farm-
ers to reduce their costs through a variety of methods. Cover crops can fix
nitrogen, an important nutrient for crops, out of the air, allowing farmers to
reduce fertilizer applications (Blanco-Canqui et al., 2012). 21% of corn growers
surveyed by Conservation Technology Information Center, 2023 said that they
reduced fertilizer costs by $20 or more per acre, though half reported spending
the same on fertilizer after integrating cover cropping. Cover crops can also
reduce herbicide costs in no-till systems, and can help with pest management
(Snapp et al., 2005), though the ability of cover crops to help depends on what
weed and pest pressure the field previously faced.

The changes that cover crops work on the soil can also lead to increased yield,
though this effect is again highly variable. Cover crops can improve soil quality
through improving moisture management, reducing soil compaction and erosion,
and increasing soil organic matter (Bergtold et al., 2019). Together, these can
help cash crops use nutrients more efficiently and produce larger harvests. In
Corn Belt corn and soy systems, the areas that benefit the most from cover
cropping may see yield increases of 15%, while the areas that are least suited
for cover cropping may see a 5% decrease in yields (Deines et al., 2019). Cover
crops can also help with water management, improving yields in drought years
in regions of the Corn Belt(O’Connor, 2013), though cover crops in arid regions
of the Great Plains may harm yields by depriving cash crops of needed moisture
(Robinson and Nielsen, 2015).

Altogether, the annual profit impact of cover crops varies widely. While
many farmers can implement cover crops profitably after an adjustment period,
the magnitude of those expected returns for corn may range from $17 to $110 per
acre after 5 years based on agroecological and economic characteristics including
whether the farmers can graze livestock on the cover crops, if they practice no-
till, or the year’s weather (Myers et al., 2019). In Kansas, a cover crop may
have a net return of $7 per year on irrigated land and a net cost of $28 per
year on dryland systems (Bergtold et al., 2019), while more than half of South
Dakota cover crop adopters believe that cover cropping has had little effect on
the profitability of their operation (Wang et al., 2021).

This variability in the long-term optimal choice for cover cropping drives
much of the adoption cost for cover cropping, which comes in the form of learning
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costs. Some farmers do need to pay physical adoption costs, such as no-till drills
for planting or mechanical crimpers for killing the cover crop (Bergtold et al.,
2019). However, farmers far more frequently cite the challenge of learning how
to cover crop as the biggest barrier to adoption. When learning how to cover
crop, a farmer risks making some costly mistakes, such as choosing the incorrect
timing to kill the cover crop. Using herbicide for termination requires careful
timing. Herbicide may persist in the soil and damage the cash crop if the farmer
uses the herbicide too close to planting or uses too much for their particular soil
and water conditions (Curran, 2016). However, waiting longer to kill the cover
crop may give additional nitrogen benefits (Sainju and Singh, 2001) and help
build the biomass needed to derive the full benefits of a cover crop (Morton
et al., 2006). Farmers may also take several years to decide how to adjust
their fertilizer usage in response to a cover crop. Cover crops can fix N in soils,
reducing fertilizer needs, but the rate at which cover crops will make N available
to cash crops can vary across locations and situations (Snapp et al., 2005).

Farmers’ knowledge of cover cropping and their confidence in their ability
to get these choices correct immediately may therefore be a substantial source
of adoption cost heterogeneity. Even within a narrow geographic band of South
Dakota, farmers who have not practiced cover cropping have widely dispersed
beliefs about the impact of cover cropping on profitability (Wang et al., 2021). It
may be possible to close some of this gap with education and supporting access
to farmer networks, which farmers describe as key to getting the information
they needed to adopt cover crops (Roesch-McNally et al., 2018). These farmer
networks can provide the hyperlocal knowledge that farmers need, helping them
learn from closely comparable farms.

Finally, it often takes farmers several years to realize the full benefits of cover
croppng, even when they find the optimal way to implement cover cropping on
their land. Cover cropping increases yields primarily through soil quality im-
provements, such as increased soil organic matter and improved moisture man-
agement. These changes accumulate slowly over several years of cover cropping,
so many farmers will not see substantial benefits until the soil has improved for
3-5 years (Myers et al., 2019). Yield benefits for maize and soybeans increase
slowly over the first several years since cover crop adoption, with yield benefits
for fields that have used cover crops for a decade or more estimated to be 10
times as large as the effect in the first year (Deines et al., 2019)

Together, this tells us that farmers face some variable adoption costs to cover
cropping, and their annual net costs of cover cropping range from the positive
to the negative. With the high variation of annual net costs from profitability
to prohibitive expense, participants could have any combination of short-term
and long-term impact discussed above. Higher short-term additionality does
not guarantee a greater long-term impact for a group, since there are farmers
who would discontinue cover cropping without incentives.

In the empirical section, I test whether targeting on observables, such as
farm size, crop type, or region, would allow policymakers to jointly maximize
long-term and short-term impacts, or whether some groups show lower short-
term but higher long-term impacts than others. While this data does not let
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me identify the underlying annual and adoption costs that farmers face, we can
get an idea of how this variation matters.

3.4 Possible Extensions

This model is simplified to illustrate the roles of short-term and long-term costs
of a practice in determining additionality and long-term impact, but it could be
extended to accommodate a range of real-world considerations.

First, the model can be extended to more time periods. As the post-contract
period grows longer, the long-term opportunities and costs of cover cropping will
weigh more heavily for both farmers and the policymaker. As such, adoption
costs will become less important to farmers than long-run profitability, and the
policymaker will more strongly prefer the farmers with a high expected long-
term effect over those with certain short-term additionality.

Also, changing risk structures could create new opportunities for efficient
contracting. I currently assume a risk-neutral farmer, but this model could in-
clude a risk-adverse farmer. Risks could increase the short-term cost if farmers
are uncertain about the adoption costs, or they could reduce long-term costs
given that cover cropping can reduce damages from drought or irregular mois-
ture patterns (Myers et al., 2019). The risk premium may alter farmers’ reserve
price for cover cropping, and it will do so differently across farmers if their ac-
tual or perceived levels of risk differ. Cover cropping is risk-reducing for farmers
in some systems, such as Tennessee cotton (Boyer et al., 2018). If a practice
increases risk, risk-neutral policymakers may be able to find more cost-efficient
incentive solutions by offering insurance policies as well as fixed payments.

In addition, this model could include a transaction cost for contracting. High
transaction costs would make the policymaker shift focus towards contracts with
higher additionality and long-term impact, since it becomes expensive to pay
the transaction costs for large numbers of cheap but lower-impact low addition-
ality contracts. Introducing transaction costs would also mean that participants
could be additional to the program but not to the practice, since some people
for whom the practice is profitable would still not join the program unless the
benefits are higher than their transaction costs. EQIP applicants report spend-
ing a modest 8.4 hours ex ante on planning and applications and 1.9 hours ex
post on acceptance and compliance paperwork (McCann and Claassen, 2016).
In this case, perceived transaction costs may be larger than the true transac-
tion costs: 29% of nonapplicant producers surveyed about their reasons for not
applying cited the application process as too complicated and time-consuming,
and 31% gave the same concerns about documenting compliance (ibid).
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4 Methodology

4.1 Regression Discontinuity Design

This paper instruments for receiving an EQIP contract with a regression dis-
continuity around the application score. The central regression specification
is:

Ykgt = αgt + β1Scorek + β2ScoreAcckg + β3ScoreAcckg ∗ Scorek
+ β4ScoreAcckg ∗Duringgt + β5ScoreAcckg ∗Aftergt+

β6Duringgt + β7Aftergt + ϵkgt (8)

where Ykgt is the outcome variable for field k in application pool g in year
t and αgt is a fixed effect for application pool g. Scorek is the application
score for field k relative to the group’s threshold variable, and ScoreAcck is
an indicator variable that equals one if Scorek is greater than or equal to the
score acceptance threshold for that pool in that year. Duringgt and Aftergt
are indicator variables that reference the year relative to the application year:
Duringgt marks the three years after the application when successful applica-
tions would be under contract, and Aftergt indicates years four to nine after an
application pool’s contract term would end. β4 and β5 are the key variables of
interest, since they estimate the differential effect of meeting the score threshold
on applicant’s behavior during the contract period and after the contract period
respectively.

Scores are not a perfect predictor of treatment since some participants ac-
cepted based on scores later drop out of their contracts and some participants
are accepted in later years. Therefore, I use the fuzzy regression discontinuity
estimator of treatment effects. For each variable of interest Y , I derive the short
term effect of contracting as

TEY =
β̂Y
4

β̂P
2 + β̂P

4

(9)

where β̂Y
4 is the β̂4 estimated using Equation 8 with variable Y as the dependent

variable, and β̂P
2 + β̂P

4 are the coefficients estimated using Equation 8 with the
probability of receiving an EQIP contract as the dependent variable. I similarly

derive the long-term effect as TEY =
β̂Y
5

β̂P
2 +β̂P

5

.

4.2 Identifying the Acceptance Threshold

To use this technique successfully first requires identifying what the thresh-
old score for acceptance is within each funding pool and year. While accurately
tracking the score of each individual application is one of the ProTract dataset’s
key administrative tasks, it does not explicitly track score cutoffs. Using Pro-
Tracts’ annual snapshot of accepted and rejected applications, I estimate the
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threshold for each score through a two-step process. First, I identify pools using
the group listed in ProTracts and application batch dates from USDA listings.
Second, I find the lowest score of an application accepted in the first reporting
year from that batch and use that as the cutoff score.

The first task is identifying the pools. In the EQIP funding process, the
state-level USDA office first screens applicants for eligibility, then sorts applica-
tions into bins of its choosing. They often define these pools by geographic area
within the state, by crop or animal production, or by resource concern such as
water quality or wildlife habitat. Within ProTracts, these are listed by fund
code. The fund code is reported for 99.8% of applications that have completed
the scoring process, and applications without a fund code are omitted from the
sample. The median state has 50 pools in a given year.

The USDA then evaluates these pools in batches. All applications received
before a certain cutoff date are evaluated for funding at once. Applications
received after that date will be rolled into the next evaluation and funding
group. State USDA offices may choose their own evaluation dates, and they
may perform these evaluations one to four times per year (USDA NRCS, 2018).

To track these dates, I cross-reference the ProTracts signup date of the
application with the USDA’s listed EQIP deadlines for a state. The signup
date is the date at which the USDA receives a complete application that is
ready for scoring and evaluation. The USDA listed EQIP deadlines come from
a centralized page maintained from 2022 to 2024 that linked producers to their
state’s filing deadlines and application websites. Using the WayBack machine, I
recorded all application dates from those years. Older application dates are not
systematically recorded. Application dates for a state wavered somewhat over
time, but stayed relatively constant: 78% were within the same month, allowing
the date to vary to keep the day of the week constant. To accommodate these
variations, I assume an actual batch cutoff three weeks after the later date within
a month. Application levels decrease immediately after a cutoff, so this method
is unlikely to misclassify many applications that belong in the next pool. Also,
some offices may have changed the number of cutoff dates within a year over
time. Between 2022 and 2024, 15 states had a different number of listed batch
dates within at least one year. In those cases I use the highest listed number
of batch dates since the Wayback Machine may have failed to capture some of
the repeat dates. Since this may split some batches into multiple batches for
analysis, it may weaken the power of my analysis, but should not introduce bias.

Within pools, applications are funded in order of scores until the category has
allocated all available funds. Pools therefore vary widely by the acceptance rate.
11% of applications in included years are in pools where all applications that
meet the minimum eligibility requirements are funded. These fully funded pools
are generally smaller, receiving a mean of 2.8 applications per fully funded pool
compared to 26.1 per competitive pool. I omit the fully funded pools from my
regression discontinuity analysis because they do not have a score discontinuity.
Applications that cannot be funded in a year are deferred, and are eligible to
subsequently resubmit the same application in another year.
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4.3 Threats to Identification

In this section I discuss two key threats to identification: manipulation of the
score around the threshold, and differential nonrandom data loss. First, this
identification relies on the assumption that whether a farmer’s application score
falls just above or below the threshold is essentially random. The barely success-
ful applicants must not be systematically different from the barely unsuccessful
applicants. This can happen if some applicants are aware of their proximity
to the threshold and are able to alter their applications to push them over the
edge.

Overall, this kind of precision manipulation is highly unlikely in this setting.
Applicants need two levers to take advantage of the threshold: they must have
some power to manipulate their scores, and they must have an idea of their
proximity to the cutoff. EQIP does give producers the first since applicants
will receive different scores based partially on the suite of practices they choose
to offer. However, anticipating the score cutoff would be quite difficult. Since
the state USDA funds applications in a pool until all the pool’s allocated funds
are committed, the cutoff score depends on both who applies to a pool in a
given year and on how much funding the state allocates to the pool. Given
fluctuations in the number of applications and funding, acceptance scores can
swing substantially across years. Nationwide acceptance rates varied from 15 to
67% between 2000 and 2011, swinging back and forth based on EQIP funding
and on application numbers (Stubbs, 2011). In addition, the exact formula for
the application score is not publicized. In conversation with USDA employees
and with other producers in their area, an applicant might glean a rough idea
of whether their pool will be particularly competitive in a given year. However,
even those USDA employees would find it nearly impossible to predict the exact
acceptance score of a competitive pool. The graph in Figure 8 of matched scores
near the discontinuity bears this out. While there is differential missingness of
data across the discontinuity, there is no particular bunching of scores just above
or missing mass just below.

The difference in counts of successful and unsuccessful applications in my
data is instead due to differential missingness. As discussed in the data section,
there are two ways that applications may drop out of my sample. The first is
that rejected contracts and deferred contracts that the applicant does not wish
to resubmit are purged from the ProTracts system once annually. To manage
this problem, I remove some years where the data purge and data pull may have
happened in close proximity. The second channel is that some data is lost in
the match from ProTracts to CARD, and unsuccessful applications have poorer
match rates. While 79% of initially successful ProTracts applications in my tar-
get states have numeric geographic data, only 27% of deferred applications have
this data. Ultimately, 42% of successful applications and 15% of unsuccessful
applications in ProTracts can be matched to CARD.

I also check for the frequency of repeat applications and find that while
many applicants will resubmit their application until accepted, submitting a
new repeat application is relatively uncommon. I find that only 21% of deferred
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Figure 8: Scores Near the Threshold
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applicants in ProTracts are later accepted. However, since never-accepted ap-
plications are less likely to have matchable CLU data, 85% of CARD-matched
deferred applicants used in my sample are later accepted. I also find that only
5% of farm fields appear in more than one contract or application over time,
suggesting that few farmers who are rejected once consider it worth their time
to apply again.

5 Results

5.1 Difference-in-difference results

First, I find that having a score above the acceptance threshold for the initial
application round increases the probability of having the contract ever accepted
and the probability of completing a contracted practice by 20%. Figure 9 shows
the discontinuity. Almost all applications that are deemed eligible accept the
contract, as we would expect given that a farmer must put effort into producing
their bid. 78% of applicants just below the threshold ultimately end up receiving
a contract in subsequent years as their initially deferred application proves suc-
cessful in another year’s less competitive application pool. This probability of a
later successful application stays quite constant across the hundred-point band-
width, suggesting there is not much substantial variation in applicant traits
across this range. Contract completion by 2020 takes a similar path to con-
tract acceptance, since only 14.5% of farmers with cover cropping contracts do
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Figure 9: Discontinuity in Contract Acceptance and Completion

(a) Contract Acceptance
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(b) Contract Completion
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not complete their practices (Wallander et al., 2019). The lower level of con-
tract completion overall reflects that many contracts in this dataset had not yet
reached the end of their planned duration by 2020.

Figure 10 shows that cover cropping also increases at the discontinuity, even
before controlling for pool fixed effects as in the full regression. By the broad
definition, cover cropping increases by 25% at the discontinuity during the con-
tract period. The post effects are difficult to detect without the appropriate
controls, but do show a slight increase in post-contract cover cropping.

The results of the full regression discontinuity, shown in Table 2, estimate
that being above the score threshold increases the chance of contract acceptance
for the during-contract group by 47% and increases during-contract cover crop-
ping by 46%. These effects are combined to estimate the contract effect after
and during contract at the bottom of Table 2. The coefficients are calculated
according to Equation 9, using the Table 2 Column 3 results for β̂P . I estimate
standard errors for these effects using the delta method. The resulting analysis
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Figure 10: Discontinuity in Short- and Long-Term Cover Cropping

(a) Cover Cropping During Contract Period
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(b) Cover Cropping After Contract Period
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Table 2: Regression Discontinuity Results

(1) (2) (3) (4)
VARIABLES Cover Cropping Cover Cropping Contract Practice

(CARD/EQIP Max) (CARD only) Accepted Certified

Application Score 0.00109*** 0.000512*** 0.00317*** 0.000716***
(0.000119) (0.000136) (0.000110) (0.000120)

Score # Score Above Threshold -0.00157*** -0.000999*** -0.00298*** -0.000677***
(0.000120) (0.000138) (0.000111) (0.000121)

During Contract 0.459*** -0.0871*** -0.374*** -0.771***
(0.0131) (0.0148) (0.0453) (0.0575)

After Contract 0.111*** -0.0557*** 0.764*** 1.450***
(0.0141) (0.0132) (0.0336) (0.0432)

Score Above Threshold -0.0351*** -0.0350*** -0.00200 0.00891*
(0.00507) (0.00589) (0.00380) (0.00500)

Score Above Threshold # During Contract 0.465*** 0.101*** 0.475*** 0.933***
(0.0128) (0.0146) (0.0148) (0.0184)

Score Above Threshold # After Contract 0.0203** 0.0540*** 0.00534 -0.0422***
(0.00823) (0.00945) (0.00621) (0.00799)

Pool Fixed Effects Yes Yes Yes Yes

Contract Effect During Contract 0.968*** 0.210***
(0.0403) (0.0265)

Contract Effect After Contract 4.135 10.42
(5.331) (14.05)

Observations 630,917 614,992 711,903 718,341
R2 0.695 0.256 0.488 0.903
Number of id 114,312 114,274 113,388 114,312

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

finds that receiving an EQIP contract increases during-contract cover cropping
by 96% during the contract and continues to increase cover cropping after. This
high level of short-term additionality is consistent with estimates from elsewhere
in the literature (Claassen et al., 2018, Mezzatesta et al., 2013, Fleming et al.,
2018).

The persistence of change is difficult to detect in the current sample, but
potentially quite large. Since the bulk of application pools with comprehensive
data on unsuccessful contracts were made between 2014 and 2017 and the cover-
cropping panel tracks fields from 2013 to 2019, the post-contract acceptance
discontinuity is smaller and based on data with higher missingness. Accordingly,
the contract effect after contract as estimated with Equation 9 and shown in
Table 2 has a wide confidence interval, with a coefficient estimate of 4.135 and a
standard error of 5.331. As further research tracks the outcomes of the 2014 to
2017 application groups, more precise estimates of the long term effect should
become possible.

5.2 Effects on Subgroups

This section explores the differential effects on subgroups by region and by
acreage under contract. Both tracked in the application database, these vari-
ables are used for decisions on targeting funding and awarding contracts, so
understanding where EQIP cover cropping is particularly effective and ineffec-
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tive is valuable for targeting. This section also tests the relationship between
duration and addtionality across subgroups. As discussed in the model section,
additionality could and duration could either covary or oppose one another de-
pending on the distribution of adoption and long-term costs. In this context,
I find that subgroups with higher additionality tend to have lower long-term
effects, so targeting exclusively on additionality could lead to poorer long-term
outcomes.

First I calculate the treatment effect by the acreage included in a cover
cropping contract application. I divide contracts into three acreage groups with
approximately equal numbers of applications: small contracts with less than
100 acres, large contracts with more than 1000 acres, and the medium con-
tracts in between. I then regress with interactions for size, and calculate each
group’s treatment coefficient using Equation 9. The resulting treatment effects
are plotted in Figure 11a.

This analysis finds that short-term additionality is increasing but long-term
impact is decreasing in contract size. Small contracts covering less than 100
acres have an estimated additionality of 20%, while the largest contracts have
60% estimated additionality. Long-term effect estimates have large confidence
intervals, but trend downwards with size: the small contracts have an estimated
treatment effect of 1.5, and large contracts have an estimated treatment effect
of .6. The 95% confidence intervals for all groups overlap. However, the confi-
dence intervals do show that additionality is either increasing or approximately
constant with acreage, and long-term effects are either constant or decreasing
with acreage.

I also analyze heterogeneity by USDA production region, with results in
Figure 11b. While these estimates are often noisy, most regions do not show
substantial effects in the short or the long term, including the key Corn Belt re-
gion of substantial interest to many private sector cover crop programs. The key
exceptions are Appalachia and the Northern Plains. Contracts in Appalachia
show the lowest additionality and highest long-term effect of any region, and
Northern Plains contracts conversely have the highest additionality and second
smallest long-term impact estimated.

Both sets of heterogeneous treatment effects share a trend: additionality
and long-term impact of subpopulations pull in opposite directions. To bet-
ter visualize this, Figure 12 plots long-term and short-term effects of contracts
together, with treatment effects winsorized to a maximum value of 1 and mini-
mum value of 1 for clearer visualization. For each set of effects, point estimates
slope downward across the graph, indicating a tradeoff between additionality
and long-term impact.

This paper’s model predicts that this will occur when subgroups primarily
vary by the long-term cost of cover cropping rather than the adoption cost.
When cover cropping is profitable in the long run, we expect low additionality
and higher long-term effects. When it is unprofitable, we expect substantial
additionality but high rates of discontinuation after incentives end. This makes
improving program targeting difficult. If the NRCS used this paper’s addition-
ality estimates to target high-additionality groups like the Northern Plains and
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Figure 11: Treatment Effects by Subgroups
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Figure 12: Long-term and Short-term Treatment Effects on Subgroups
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large contracts, this would shift funding away from groups where the effect of
EQIP will persist more strongly in the long run.

6 Conclusion

Like many environmentally beneficial practices, cover cropping requires effort
both to adopt and to maintain. The perceived size of the adoption costs and
the the long-run costs or benefits can determine whether a farmer will adopt
the practice on their own, whether they’ll apply for programs like EQIP that
offer transition funding, and whether they’ll continue the practice after incen-
tives end. This paper finds that the EQIP cover cropping program participants
are largely additional, with program acceptance increasing the chance of cover
cropping by 95%. The translation into long-term practice change is uncertain.

However, subgroup effects suggest that long-term and short-term effects can-
not easily be jointly targeted for cover cropping. As this paper’s model explains,
long-term effects of short-term incentive programs depend on both the practice’s
additionality and on farmers’ willingness to persist with it after incentives end.
Farmers for whom cover cropping would be somewhat profitable in the long run
are more likely to adopt on their own, but they are also more likely to keep us-
ing the practice. Subgroups such as small farms and those in Appalachia seem
to fall into that category where low short-term effects are paired with higher
long-term effects. Conversely, groups for whom the practice is less profitable to
sustain will be more additional but have a lower long-term impact, which fits
the results for larger parcels and the Northern Plains region. Adoption costs
may be similar across these subpopulations with some random variation, but
these results are not consistent with a strong positive or negative correlation
between adoption costs and long-term costs.

This indicates that in cover cropping, targeting exclusively based on addi-
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tionality may lead to long-term losses. In this context and others, evaluators
measure additionality more frequently than long-term impact, and policymakers
may be tempted to focus on improving additionality through adding new eligibil-
ity restrictions. That instinct could increase a program’s impact if participants
mostly vary by adoption costs. However, if that variation in additionality is due
to long-term costs, policymakers risk cutting into their program’s long-term
impact. Cover cropping is known to have highly variable long-term benefits,
and the subgroup results in this paper suggest that the variation in long-term
benefits dominates any effect of variation in adoption costs.

These findings also highlight potential challenges for voluntary carbon credit
markets for cover cropping. Given the mixed additionality and persistence found
among subgroups in this study, a carbon crediting program would struggle to
guarantee both that the carbon they store is additional and that it would per-
sist. To manage the additionality problem, the credit program might choose to
discount credits based on the estimated overall level of additionality. To deal
with the rerelease problem, the credit market might design some program to
replace credits after carbon is released or switch to a credit-year system, which
sets a ton of temporary storage as worth a fraction of a permanent ton emitted
(Brandão and Levasseur, 2011; Fearnside et al., 2000). Any of these solutions
will decrease the size of the market payment available to farmers and thus may
limit the program’s ability to create large-scale change.

Short-term payment programs like EQIP can avoid some of these difficulties.
Mismeasuring the additionality and long-term benefits of government payments
may lead to inefficient uses of funds, but it will not lead to excess greenhouse
gas release as nonadditional private market credits might. In addition, govern-
ment incentive programs can take into account the full range of externalities
provided by a practice: cover cropping incentives have significantly improved
water quality in the Chesapeake Bay (Fleming et al., 2018), and the first cover
cropping incentives were designed only in response to concerns around soil and
water quality (Turner et al., 2014).

In addition, policymakers can use this framework of short-term and long-
term costs to design the structure of repeat payment programs. EQIP’s one-time
contract structure can provide all needed support for changes that need adoption
costs but face few if any long-term costs, such as building water management
structures. However, depending on the farm, some carbon-storing practices
like cover cropping and reduced tillage may produce long-term environmental
benefits but not enough financial benefits for the producer to continue them
on their own. In those cases, repeat contracts with smaller payments that
cover these ongoing costs could have substantial additionality. This highlights a
role for programs like the Conservation Stewardship Program (CSP), a USDA
program that pays past conservation practice adopters to enhance or add new
conservation practices while sustaining previous ones.

This paper also illustrates the need for more work in this area that controls
for the application decision and that follows practices over longer periods of
time. There have historically been few data sources that reliably track farmers
over time, and connecting farmers to past program participation has typically
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relied on imperfect recall questions. Modern satellite imagery databases may
make tracking practices in individual fields over time more achievable. The Pro-
Tracts database used in this project was designed primarily to track successful
applications and not unsuccessful ones, which led to the differential missingness
of unsuccessful applications in this paper’s sample. To improve the precision of
the long-term effects estimated here, I will continue to incorporate more years
of outcomes as they become available. Future programs should put care into
tracking unsuccessful applicants, since they are a subgroup that are likely to be
more similar in terms of unobservables than any other group. In addition, they
are particularly relevant when exploring the likely effects of marginal increases
or decreases in program funding.

In future work, researchers can also explore how a range of nature-based
solutions fit into this framework of adoption and long-term costs. Nature-based
solutions could provide up to 30% of the the emissions reductions needed to meet
global goals (Miles et al., 2021). They include a wide range of practice changes,
including improved forestry management, reduced tillage and other agricultural
changes, regenerative rangeland management, agroforestry, and shifts in nu-
trient management. Achieving the full potential of these changes will require
tailoring incentives to a wide variety of economic and biological contexts. The
adoption cost/long-term cost framework of this paper can provide a starting
point for that work, ideally through estimating average adoption and long-term
costs and through how much they vary within and between populations.
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