## Supporting Information

## Direct Synthesis of Bulk Boron-Doped Graphitic Carbon

Nicholas P. Stadie, Emanuel Billeter, Laura Piveteau, Kostiantyn V. Kravchyk, Max Döbeli, and Maksym V. Kovalenko

## **Contents:**

Tables S1-S3. Acquisition parameters for <sup>11</sup>B and <sup>13</sup>C NMR experiments

- Figure S1. Photographs of precursors and BC<sub>3</sub>' product
- Figure S2. <sup>13</sup>C MAS NMR spectrum of BC<sub>3</sub>'

Figure S3. Raman spectroscopy of reference materials

Figure S4. XRD comparison between tiled BC<sub>3</sub>' and BC<sub>3</sub>' (this work)

Figure S5. SEM comparison between tiled BC<sub>3</sub>' and BC<sub>3</sub>' (this work)

Figure S6. Raman spectroscopy comparison between tiled BC<sub>3</sub>' and BC<sub>3</sub>' (this work)

Figure S7. Raman spectroscopy analysis of various BC<sub>3</sub>' materials

Figure S8. <sup>11</sup>B MAS NMR comparison between tiled BC<sub>3</sub>' and BC<sub>3</sub>' (this work)

Figures S9-S10. ERDA comparison between tiled BC<sub>3</sub>' and BC<sub>3</sub>' (this work)

| Magnetic Field (T)                                    | 16.4                    |
|-------------------------------------------------------|-------------------------|
| Temperature (K)                                       | 298                     |
| Rotor Diameter (mm)                                   | 2.5                     |
| Pulse Sequence                                        | mp3qdfs (Bruker)        |
| Number of Scans                                       | 1664                    |
| Recycle Delay (s)                                     | 0.6                     |
| Spectral Width (kHz)                                  | Direct Dimension: 100   |
|                                                       | Indirect Dimension: 125 |
| Spinning Frequency (kHz)                              | 20                      |
| Acquisition Length (points)                           | Direct Dimension: 1024  |
|                                                       | Indirect Dimension: 256 |
| Rotor Cycles for Synchronization                      | 40                      |
| Indirect Dimension Increment (µs)                     | 8.0                     |
| Split-t <sub>1</sub> Increment ( $\mu$ s)             | 6.2                     |
| <sup>11</sup> B Excitation Pulse Width $[\pi/2]$ (µs) | 4.5                     |
| Double Frequency Sweep Length (µs)                    | 12.5                    |
| <sup>11</sup> B Selective Pulse Width $[\pi]$ (µs)    | 42                      |

 Table S1. Acquisition parameters for <sup>11</sup>B MQMAS NMR (Figure 5)

 Table S2. Acquisition parameters for <sup>11</sup>B MAS NMR (Figure S7)

| Magnetic Field (T)                             | 16.4              |
|------------------------------------------------|-------------------|
| Temperature (K)                                | 298               |
| Rotor Diameter (mm)                            | 2.5               |
| Pulse Sequence                                 | hahnecho (Bruker) |
| Number of Scans                                | 304               |
| Recycle Delay (s)                              | 1                 |
| Spectral Width (kHz)                           | 100               |
| Spinning Frequency (kHz)                       | 20                |
| Acquisition Length (points)                    | 2048              |
| <sup>11</sup> B 90° Pulse Width $[\pi/2]$ (µs) | 22                |

 Table S3. Acquisition parameters for <sup>13</sup>C MAS NMR (Figure S1)

| Magnetic Field (T)                             | 16.4          |
|------------------------------------------------|---------------|
| Temperature (K)                                | 298           |
| Rotor Diameter (mm)                            | 2.5           |
| Pulse Sequence                                 | zg30 (Bruker) |
| Number of Scans                                | 936           |
| Recycle Delay (s)                              | 120           |
| Spectral Width (kHz)                           | 178.6         |
| Spinning Frequency (kHz)                       | 20            |
| Acquisition Length (points)                    | 2048          |
| <sup>13</sup> C 90° Pulse Width $[\pi/2]$ (µs) | 3.4           |



Figure S1. Photographs of (a) precursor solution (BBr<sub>3</sub> and C<sub>6</sub>H<sub>6</sub>), (b) as-carbonized BC<sub>3</sub>', and (c) collected/washed BC<sub>3</sub>' after direct synthesis for 1 h at 800 °C.



**Figure S2**. <sup>13</sup>C MAS NMR spectrum of directly-synthesized BC<sub>3</sub>' deconstructed to show the background contribution from the probe.



Figure S3. Raman spectra of boron carbide and  $\beta$ -rhombohedral boron reference samples in comparison to directly-synthesized BC<sub>3</sub>'.



**Figure S4**. XRD pattern of tiled  $BC_{3'}^{[S1]}$  in comparison to directly-synthesized  $BC_{3'}$ , both synthesized at 800 °C under "optimal" heating ramps (6 °C/h and 60 °C/h, respectively).



Tiled  $BC_3'$  (13 h)

Tiled  $BC_3'$  (130 h)

Directly-Synthesized BC<sub>3</sub>' (13 h)

**Figure S5**. SEM micrographs of tiled BC<sub>3</sub>' (obtained after 13 h or 130 h, this work) in comparison to directly-synthesized BC<sub>3</sub>' (obtained after 13 h, this work).



Figure S6. Raman spectrum of tiled BC<sub>3</sub>'<sup>[S1]</sup> in comparison to directly-synthesized BC<sub>3</sub>'.



Figure S7. Raman spectroscopy analysis of the  $I_D/I_G$  ratio as a function of boron content and excitation wavelength in thin-film  $BC_x'$ <sup>[S3]</sup> in comparison to directly-synthesized  $BC_x'$ .



**Figure S8**. <sup>11</sup>B MAS NMR spectra of boron trioxide (B<sub>2</sub>O<sub>3</sub>)<sup>[S2]</sup> and tiled BC<sub>3</sub>'<sup>[S1]</sup> in comparison to directly-synthesized BC<sub>3</sub>' (this work).



**Figure S9**. Representative ERDA spectrum of tiled BC<sub>3</sub>' (synthesized herein, following the route described elsewhere<sup>[S1]</sup>) in comparison to directly-synthesized BC<sub>3</sub>' (this work).



Figure S10. ERDA composition of tiled BC<sub>3</sub>' and directly-synthesized BC<sub>3</sub>' (as in Figure S8).

## **Supporting References:**

(S1) King, T. C.; Matthews, P. D.; Glass, H.; Cormack, J. A.; Holgado, J. P.; Leskes, M.; Griffin, J. M.; Scherman, O. A.; Barker, P. D.; Grey, C. P.; Dutton, S. E.; Lambert, R. M.; Tustin, G.; Alavi, A.; Wright, D. S., Theory and Practice: Bulk Synthesis of C<sub>3</sub>B and its H<sub>2</sub>- and Li-Storage Capacity. *Angew. Chem. Int. Ed.* **2015**, 54, 1-6.

(S2) Kroeker, S.; Stebbins, J. F., Three-Coordinated Boron-11 Chemical Shifts in Borates. *Inorg. Chem.* **2001**, 40 (24), 6239-6246.

(S3) Naeini, J. G.; Way, B. M.; Dahn, J. R.; Irwin, J. C., Raman scattering from boronsubstituted carbon films. *Phys. Rev. B* **1996**, 54 (1), 144-151.