Supporting Information

Bulk Phosphorus-Doped Graphitic Carbon

Emanuel Billeter, Devin McGlamery, Marcel Aebli, Laura Piveteau, Maksym V. Kovalenko, and Nicholas P. Stadie

Contents:

- Figure S1. Photographs of directly-synthesized PC_x
- Figure S2. Raman spectra of directly-synthesized PC_x
- Figure S3. Raman analysis of I_D/I_G of directly-synthesized PC_x
- Figure S4. ¹³C MAS NMR spectra of directly-synthesized PC_x
- Figure S5. XPS depth-profile analysis of directly-synthesized PC5
- Figure S6. XPS fitting analysis of directly-synthesized PC₅
- Table S1. XPS fitting analysis of directly-synthesized PC5
- Figure S7. ³¹P MAS NMR detail spectra of directly-synthesized PC_x
- Figure S8. Nitrogen adsorption uptake of directly-synthesized PC5

Figure S1. Photographs of (a) graphitic PC₃ synthesized at 800 °C, and (b-d) graphitic PC synthesized at 1050 °C showing large yellow liquid droplets of white phosphorus (P₄). All scale bars correspond to 1 cm.

Figure S2. Raman spectra of graphitic PC_x synthesized at (a) 800 °C (for 1 h at setpoint), (b) 800 °C (for 12 h at setpoint), and (c-d) 1050 °C (for 1 h at setpoint).

Figure S3. Variation of I_D/I_G measured by Raman spectroscopy of graphitic PC_x synthesized at 800 and 1050 °C (for 1 h or 12 h at setpoint).

Figure S4. ¹³C MAS NMR spectra of graphitic PC_x synthesized at 1050 °C, acquired with a 30° single pulse sequence.

Figure S5. XPS depth-profile analysis of graphitic PC₅ synthesized at 800 °C. (a) Survey spectra and (b-d) detail regions were measured at three depths: after 0 min sputtering (dark blue), 2 min sputtering (blue), and 20 min sputtering (light blue).

Figure S6. XPS depth-profile analysis of graphitic PC₅ synthesized at 800 °C (as in Figures 7 and S5), showing detailed fitting results after 0 min sputtering (left) and 2 min sputtering (right).

Table S1. XPS peak fitting analysis of *directly-synthesized* PC5 (as shown in Figures 7, S5-S6) as a function of depth below the material surface (as indicated by sputtering time) by percentage peak area (peak identity and position as indicated)

Peak (Position)	0 min Sputtering	2 min Sputtering	20 min Sputtering
P-P p _{3/2} (~129.8 eV)	32.3%	48.5%	47.7%
$P-P p_{1/2} (\sim 130.6 \text{ eV})$	16.1%	24.2%	23.8%
$P-C_{p_{3/2}} (\sim 131.4 \text{ eV})$	22.5%	13.0%	16.3%
$P-C_{p_{1/2}} (\sim 132.2 \text{ eV})$	11.4%	6.6%	8.1%
$P-O_{p_{3/2}} (\sim 133 \text{ eV})$	11.7%	5.0%	2.7%
$P-O_{p_{1/2}} (\sim 134 \text{ eV})$	6.0%	2.6%	1.4%
	—PC —PC ₃ —PC ₅	The state of the s	$ \begin{array}{c} -PC \\ -PC_8 \times 0.5 \end{array} $ $ \begin{array}{c} -PC_3 \\ -PC_8 \times 0.7 \end{array} $
400 200 0 -200 -400 -6	—PC ₈	200 100 0 ³¹ P Shift (ppm)	—PC ₅ —PC ₈ × 2.0

Figure S7. Detail of ³¹P MAS NMR spectra of PC, PC₃, and PC₅ compared to PC₈ (which shows the minimum contribution from phosphates), all synthesized at 1050 °C, as shown in Figure 5.

Figure S8. Equilibrium adsorption uptake of N₂ at 77 K on graphitic PC₅ synthesized at 800 °C (left) and corresponding BET plot (right) showing the best fit results (gray dashed line, indicating a BET surface area of 1.49 m² g⁻¹).