Longterm trends in phytoplankton productivity in McMurdo Dry Valley lakes

Amy L. Chiuchiolo, Pamela Santibáñez, John C. Priscu Dept. of Land Resources and Environmental Sciences, Montana State University

Introduction

The McMurdo Dry Valley LTER site (MCM) is located in the coldest, driest desert on Earth (Figure 1). Because of the delicate balance between frozen and liquid water, subtle changes in climate can have dramatic effects on the ecology of this system. Lakes are the only year-round liquid water environments in the MCM region (and on the continent), and phytoplankton growth in these lakes is light limited. <3% of incident irradiance penetrates the thick ice covers of the MCM lakes, and under-ice irradiance rarely exceeds 50 µmol photons/m²/s. It has been suggested that light is the primary constraint on photosynthesis in these lakes. Here we use Generalized Additive Models (GAMs) and our 20 year LTER dataset to determine if photosynthetically available radiation (PAR) is the primary driver of phytoplankton productivity in the MCM lakes.

Methods

Sample collections were done 2-3 times annually during the austral spring and summer (Nov-Dec) from 1995-2014 in Lake Fryxell (FRX), East Lake Bonney (ELB), and West Lake Bonney (WLB).

- **PPR** was measured by ¹⁴C uptake over 24 hours and integrated over the photic zone (μgC m⁻² d⁻¹).
- Photosynthetically Available Radiation (PAR) was logged during PPR incubations using a LI-COR LI-193SA \bullet spherical underwater quantum sensor. PAR values were averaged over the incubation period and Beer's Law was used to calculate average incubation period PAR at each incubation depth using water column extinction coefficients calculated from vertical profiles of PAR. Average incubation period PAR was integrated over the photic zone (μ mol photons m⁻¹d⁻¹).
- **Time series analysis:** Generalized Additive Models (GAMs) were used to estimate non-linear temporal trends of PPR and PAR. All temporal trend plots have a fitted trend (dark line), 95% confidence intervals

Figure 1. Location of the MCM Dry Valleys (77°S, 163°E) and the study lakes.

(shadow areas) and raw observations (dots). At each lake, regression GAMs were used to estimate the relationship between PPR as the response variable and PAR as the predictor variable after adjusting for the time. To fit the GAMs, we used R programming (version 12.5.3) and mgcv package (Wood, 2006).

show a significant

trend over time.

significant trend

lowest complexity

of the three lakes

for PAR and PPR

(Figure 3c).

PPR showed a

WLB had the

over time.

Conclusions

UW PAR in FRX and ELB have significant trends. WLB, despite its location <1 km from ELB, does not show any trend in UW PAR, perhaps due to the high amounts of glacial till often observed in WLB.

All lakes show a significant trend in PPR, but, despite their close proximity and location in the same valley, PPR does not follow the same trend between lakes. Fryxell shows the most complex trend, followed by ELB, then WLB.

PPR did not show a positive correlation with UW PAR after adjusting for the time trend. The model

The higher complexity of the PPR and PAR trends in FRX may be explained by local climatic conditions. FRX receives higher and more uniform annual flux of incident PAR than ELB or WLB due to its open basin. However, FRX also receives more snowfall and has cloudier conditions than ELB or WLB, and has the thickest ice cover.

Our GAM regressions show that UWPAR is the primary driver of phytoplankton productivity in FRX and WLB, but not in ELB.

Phytoplankton in FRX are adapted to lower light and show less nutrient deficiency than phytoplankton in ELB or WLB, suggesting that primary productivity in FRX is more tightly coupled to light availability than phytoplankton in ELB or WLB.

<u>Acknowledgements</u>